

CMS HF measurements and implication to sPHENIX studies

Gian Michele Innocenti, Yen-Jie Lee Massachusetts Institute of Technology (MIT)

Brainstorming meeting for MVTX detector physics deliverable

Introduction to heavy flavour physics

Heavy quarks produced in high Q^2 processes at early stages of the collisions

pPb:

- test of cold nuclear matter effects
 - PDF modifications
 - saturation
 - final state effects
- collective evolution (hydro?)

pp:

- test of pQCD calculations
- reference for pA and AA measurements
- role of MPI interactions

Introduction to heavy flavour physics

Heavy quark energy loss in PbPb:

• collisional vs radiative component

Flavour dependence energy loss:

- $<\Delta E> \propto \alpha_s C_R q L^2$
- Dead cone effect: gluon radiation suppressed at small angles for massive quarks

Collective behaviour:

- v_n measurements to study collective behaviour of heavy quarks
- charm recombination in medium?

Overview of the CMS detector

Primary vertex resolution in pp collisions

https://arxiv.org/pdf/1405.6569.pdf

Impact parameter resolution in pp collisions

p_T resolution in PbPb collisions at 5 TeV

key features for a successful HF experiment

From our experience with CMS and LHC it is fundamental to have:

- primary and secondary vertex resolution
- good impact parameter resolution down to low p⊤
- Is PID fundamental for low p_T D mesons? CMS low pt results demonstrated that PID is important but is not strictly necessary
- For low p_T physics, very big MB samples are clearly more important as shown by the comparison between CMS and ALICE results...

PID ALICE performances ITS/TPC/TOF

CMS low pt results without PID

With very large samples (~2.5 billion MB events in pp and ~300M events in 0-100% PbPb) we can go down to very low p_{T.}

We can actually do better (down to 1 GeV or lower) with more cut optimisation (machine learning techniques...)

D⁰ triggers at High-Level-Trigger (HLT)

Events firing hardware jet triggers (Level-1) are selected

 L1 jet algorithm with online background subtraction

Tracks are reconstructed in software trigger system (HLT) for selected events

Track seed p_T cut applied:

- $p_T > 2 \text{ GeV for pp}$
- p_T > 8 GeV for PbPb

D⁰ meson are reconstructed

- Online D⁰ reconstruction
- loose selection to reduce the rates based on D⁰ vertex displacement

Performances of D⁰ triggers

→ pp efficiency reaches 100% right above its D⁰ p_T threshold → PbPb efficiency goes from
 ~90 to 100% depending on p_T

A quick summary of our results

D and B cross sections in pp collisions

D⁰ at 5.02 TeV, |y|<1.0

B⁺ measurement at 5.02 TeV, |y|<2.4

D and B meson production cross sections well described by NLO calculations:

- →D meson upper edge of FONLL calculations
- \rightarrow B meson consistent with central values of FONLL at higher p_T , slightly higher for p_T <15 GeV

B meson production in pPb collisions

PRL 116 (2016) 032301

FONLL R_{pA} fully compatible with unity

No sizeable modification as a function of rapidity

→ D R_{pA} and HF electron studies can give also complementary information!

D⁰ meson R_{AA} at 5.02 TeV

D⁰ R_{AA} measured from 2 to 100 GeV/c at central rapidity in 0-100%

- → ~300 MB events recorded for low p_T analysis
- → Dedicated triggers designed to perform full track reconstruction at HLT and to reconstruct and identify D⁰ meson events at HLT

Exclusive B⁺ meson measurement in PbPb

CMS B⁺ production in PbPb at central rapidity |y|<2.4

CMS-PAS-HIN-16-011

Strong suppression (R_{AA}~0.4) observed in 0-100% PbPb collision for p_T>7 GeV/c Well described by theoretical calculations that include radiative energy loss

R_{AA} of non prompt J/ψ at 2.76 TeV

CMS non prompt 1.6<|y|<2.4 CMS non prompt |y|<2.4 ATLAS non prompt |y|<2.9

Strong suppression observed for non prompt J/ ψ in PbPb collisions \rightarrow similar studies can be done in the c,b->electrons channel

Flavour dependence at 5.02 TeV

Flavour dependence at higher pt

b-jet R_{AA} inclusive jet R_{AA}

Same suppression for b-jets and inclusive jets at high p_T Mass difference negligible at high p_T

Flavour dependence at higher pt

b-jet R_{AA} inclusive jet R_{AA}

NLO process: Gluon splitting

→ dominant at low opening angles

Same suppression for b-jets and inclusive jets at high p_T Mass difference negligible at high p_T

Large contribution of gluon splitting processes? In GSP case, we are not measuring the b-quark E_{loss} but to some "fat" gluon E_{loss}

Di-b-jet measurement in PbPb at 5.02 TeV

→ In back-to-back events bb production via gluon splitting processes is negligible

x_J distributions of di-b-jets significantly modified in central PbPb collisions!

Di-b-jet measurement in PbPb at 5.02 TeV

$$x_J = p_{T,2} / p_{T,1}$$

Same average asymmetry observed for inclusive jets!

CMS-HIN-16-005

There is no significant difference in the suppression of inclusive and bjets even after excluding the contribution of gluon splitting processes

D⁰ elliptic flow in PbPb collisions

CMS-PAS-HIN-16-007

we need **charm quark diffusion** to describe the magnitude of the D meson v_2

Summary and conclusions

CMS experiment showed to be an excellent detector for HF measurements thanks to:

- excellent tracking and vertexing system
- efficiency di-muon trigger system and capability to trigger on HF probes
- possibility to run at very high luminosity and collect huge amount of MB
- PID (that is still in possible in CMS with pixel) is important but not fundamental

How can sPHENIX be complementary:

- both low pT (flow, collectivity) and high pT (jet queching, flavour dependence) are still not completely understood.
- sPhenix could collect huge amount of data to help solving both the puzzles
- the possibility of having both data at LHC and RHIC energies is a unique opportunity to validate theoretical calculations that are now very well "tuned" at LHC.

BACKUP

heavy quark production mechanism

LO process: Flavour Creation (FCR)

→ bb produced back-to-back in azimuthal plane and symmetric in p_T

NLO process: Flavour Excitation (FEX)

 \rightarrow bb pairs produced asymmetric in p_T and with a broad opening angle

NLO process: Gluon splitting_(GSP)

- → produced with small opening angles and asymmetric in p_T
 - → bb are not involved in the hard scattering but produced later

Reminder on HF energy loss

 produced early in the collision, they strongly interact with the deconfined medium

→ In-medium energy loss as a consequence of radiative and collisional processes.

Flavour-dependence of radiative energy loss:

- Larger for gluons than for quarks E.g. in BDMPS model [I] $<\Delta E> \propto \alpha_s \, C_R \, q \, L^2$
- Dead cone effect: gluon radiation suppressed at small angles for massive quarks

$$\Delta E_g > \Delta E_{u,d,s} > \Delta E_c > \Delta E_b$$

$$\rightarrow R_{AA}^{B} > R_{AA}^{D} > R_{AA}^{light}$$
 (??)

Heavy-flavours in pp and pPb collisions

Heavy quarks produced in high Q² processes at early stages of the collisions

pPb:

- test of cold nuclear matter effects
 - PDF modifications
 - saturation
 - final state effects
- collective evolution (hydro?)

pp:

- test of pQCD calculations
- reference for pA and AA measurements

Heavy-flavours in PbPb collisions

Heavy quark energy loss in PbPb:

• collisional vs radiative component

Flavour dependence energy loss:

- $<\Delta E> \propto \alpha_s C_R q L^2$
- Dead cone effect: gluon radiation suppressed at small angles for massive quarks

Collective behaviour:

- v_n measurements to study collective behaviour of heavy quarks
- charm recombination in medium?

Charmonia in heavy-ion collisions

Charmonia are bound states of cc

$$au_{
m formation}^{car{c}} \lesssim au_{
m formation}^{QGP} < au_{
m life}^{QGP} < au_{
m decay}^{
m quarkonium}$$

The presence of QGP should affect charmonia production (yield and kinematics)

Less bounded states melts at lower temperature T^{diss} (1S) > T^{diss} (2S) > ...

We should observe a hierarchy in the dissociation of different quarkonia states depending on their binding energies

Charmonia in heavy-ion collisions

Charmonia are bound states of cc

$$au_{
m formation}^{car{c}} \lesssim au_{
m formation}^{QGP} < au_{
m life}^{QGP} < au_{
m decay}^{
m quarkonium}$$

The presence of QGP should affect charmonia production (yield and kinematics)

Less bounded states melts at lower temperature T^{diss} (1S) > T^{diss} (2S) > ...

But life is not that easy, charm (re)combination in the medium is expected to play a significant role at LHC!

Bottomonia, a cleaner probe for the QGP

Y(nS) states are less likely to be created via recombination!

HF models overview

	Table 11: Comparative overview of	of the models for heavy-quark ener	gy loss or transport in the medium	described in the previous sections.
--	-----------------------------------	------------------------------------	------------------------------------	-------------------------------------

Table 11: Comparative overview of the models for heavy-quark energy loss or transport in the medium described in the previous sections.						
Model	Heavy-quark	Medium modelling	Quark-medium	Heavy-quark	Tuning of medium-coupling	
	production		interactions	hadronisation	(or density) parameter(s)	
Djordjevic et al.	FONLL	Glauber mode1	rad. + coll. energy loss	fragmentation	Medium temperature	
[511–515]	no PDF shadowing	nuclear overlap	finite magnetic mass		fixed separately	
		no fl. dyn. evolution			at RHIC and LHC	
WHDG	FONLL	Glauber model	rad. + coll. energy loss	fragmentation	RHIC	
[459, 519]	no PDF shadowing	nuclear overlap			(then scaled with $dN_{ch}/d\eta$)	
		no fl. dyn. evolution				
Vitev et al.	non-zero-mass VFNS	Glauber model	radiative energy loss	fragmentation	RHIC	
[422, 460]	no PDF shadowing	nuclear overlap	in-medium meson dissociation		(then scaled with $dN_{ch}/d\eta$)	
		ideal fl. dyn. 1+1d				
		Bjorken expansion				
AdS/CFT (HG)	FONLL	Glauber mode1	AdS/CFT drag	fragmentation	RHIC	
[624, 625]	no PDF shadowing	nuclear overlap			(then scaled with $dN_{ch}/d\eta$)	
		no fl. dyn. evolution				
POWLANG	POWHEG (NLO)	2+1d expansion	transport with Langevin eq.	fragmentation	assume pQCD (or 1-QCD	
[507–509, 585, 586]	EPS09 (NLO)	with viscous	collisional energy loss	recombination	U potential)	
	PDF shadowing	fl. dyn. evolution				
MC@sHQ+EPOS2	FONLL	3+1d expansion	transport with Boltzmann eq.	fragmentation	QGP transport coefficient	
[528-530]	EPS09 (LO)	(EPOS model)	rad. + coll. energy loss	recombination	fixed at LHC, slightly	
	PDF shadowing				adapted for RHIC	
BAMPS	MC@NLO	3+1d expansion	transport with Boltzmann eq.	fragmentation	RHIC	
[537-540]	no PDF shadowing	parton cascade	rad. + coll. energy loss		(then scaled with $dN_{ch}/d\eta$)	
TAMU	FONLL	2+1d expansion	transport with Langevin eq.	fragmentation	assume 1-QCD	
[491, 565, 606]	EPS09 (NLO)	ideal fl. dyn.	collisional energy loss	recombination	U potential	
	PDF shadowing		diffusion in hadronic phase			
UrQMD	PYTHIA	3+1d expansion	transport with Langevin eq.	fragmentation	assume 1-QCD	
[608–610]	no PDF shadowing	ideal fl. dyn.	collisional energy loss	recombination	U potential	
Duke	PYTHIA	2+1d expansion	transport with Langevin eq.	fragmentation	QGP transport coefficient	
[587, 628]	EPS09 (LO)	viscous fl. dyn.	rad. + coll. energy loss	recombination	fixed at RHIC and LHC	
	PDF shadowing				(same value)	

[1506.03981]

Our experimental tools

Semi-leptonic electrons and muons from c and b quarks

Displayed J/ ψ from B decays

Fully reconstructed D meson decays:

- $D^0 \rightarrow K^- + \pi^+$
- $D^+ \rightarrow K^- + \pi^+ + \pi^+$
- $D^{*+} \rightarrow D^0 + \pi^+$
- $D^+_s \rightarrow \varphi + \pi^+$

Our experimental tools

Fully reconstructed B meson decays:

- B⁺ \rightarrow J/ ψ K⁺ \rightarrow μ ⁺ μ ⁻ K⁺
- $B^0 \rightarrow J/\psi K^{0*} \rightarrow \mu^+ \mu^- K^+ \pi^-$
- $B_s \rightarrow J/\psi \phi \rightarrow \mu^+ \mu^- K^+ K^-$

tagged c- and b-jets

- standard jet reconstruction
- tagging based on the displacement with respect to the primary vertex

BB Δφ correlations

NLO process: Gluon splitting (GSP)

→ produced with small opening angles and asymmetric in p_T

 $B\overline{B}$ correlations strongly affected by gluon splitting processes at low $\Delta\varphi$

Gluon splitting (GS) contribution not well modelled by most of the calculations \rightarrow GS contribution underestimated by models b

D⁰ production in pPb collisions

ALICE D measurements at 5.02 TeV, |y|<0.5

ALICE, arXiv: 1605.07569

 R_{pA} well described by Cold Nuclear Matter (CNR) models and consistent with unity at high $p_T!$

Not possible to discriminate between various models with current uncertainties

D⁰ meson R_{pA} at 5.02 TeV

LHCb D⁰ measurement at 5.02 TeV in forward(F) and backward (B) region as a function of transverse momentum and rapidity

 R_{pA} and R_{FB} described by to NLO prediction that include EPS09 parametrisation of the nuclear PDFs

b-jet nuclear modification factor in pPb

central rapidity rapidity

CMS b-jet R_{pA} in bins of transverse momentum and pseudo-rapidity

PYTHIA R_{pA} consistent with unity as a function of p_T and pseudo-rapidity

backward

CMS, PLB 754 (2016) 59

Heavy flavour leptons: LHC vs. RHIC

ALICE heavy flavour muons (c,b→muons) in pPb collisions at 5.02 TeV

forward (shadowing) backward (anti-shadowing)

Models with CNM describe forward/backward rapidity at LHC

Heavy flavour leptons: LHC vs. RHIC

ALICE heavy flavour muons (c,b→muons) in pPb collisions at 5.02 TeV

forward (shadowing) backward (anti-shadowing)

Models with CNM describe forward/backward rapidity at LHC

→ Not possible at RHIC

D meson RAA in 0-10%

ALICE D⁰ R_{AA} |y|<0.5 at 2.76 TeV

CMS D^0 R_{AA} |y|<1.0 at 5.02 TeV

25.8 pb⁻¹ (5.02 TeV pp) + 404 μ b⁻¹ (5.02 TeV PbPb) CMS Preliminary TAA and lumi. uncertainty Centrality 0-10% 0.8 کے |y| < 10.6 0.4 0.2 10^{2} p_T (GeV/c) CMS-PAS-HIN-16-001

Strong suppression at 2.76 TeV: same suppression for D⁰,D⁺,D^{*+}

Similar suppression at 5.02 TeV: Rising trend observed when going to high p_T

Comparison to theoretical calculations

CMS-PAS-HIN-16-001

Several models describe the data within uncertainties:

- hints at low p_T that collisional energy loss is non negligible
- pure collisional models can describe the R_{AA} up to high p_T (??)
- shadowing improve description of the data at low p_T

D meson R_{AA} at 2.76 TeV

Strong suppression in central PbPb events: same suppression for D^0,D^+,D^{*+} indicate independence from fragmentation

ALICE and CMS in good agreement Differences at higher p_T due to different p_T references

D⁰ meson R_{AA} at 5.02 TeV

CMS D⁰ R_{AA} |y|<1.0 at 5.02 TeV

Strong suppression observed at 5.02 TeV Rising trend observed when going to high p_T

Similar suppression observed at 2.76 and 5.02 TeV by CMS and ALICE Caveat: different rapidities

Flavour dependence of Eloss at 2.76 TeV

According to this model, the difference R_{AA} for non prompt J/ψ and B can be attributed to a difference in the E_{loss} of charm and beauty quarks

Flavour dependence of Eloss at 2.76 TeV

CMS-PAS-HIN-15-005

Non-prompt J/ ψ D mesons π^{+-}

No change in the physics message when comparing to the final result of non prompt J/ ψ R_{AA} from CMS

Comparison with models

we need **charm quark diffusion** to describe the magnitude of the D meson v_2 !

Heavy-flavour muons at 2.76 TeV

Positive v₂ for muons from heavy-flavour decays (b+c) at LHC:

- include the contributions of beauty to v2 that is currently unknown
- v₂ of heavy flavour muons < v₂ (D⁰) from ALICE

Non-prompt J/ φ at 2.76 TeV vs B⁺ at 5.02 TeV

The B⁺ R_{AA} at 5.02 TeV and non-prompt J/ φ at 2.76 fully compatible within uncertainties! BIG CAVEAT: different energies!

Exclusive B-meson measurements

Exclusive B mesons can span the full range and get closer to the parton kinematic!

→ Clean and high statistics sample collected by triggering on muons!

v_2 of non prompt J/ψ

 v_2 of non prompt J/ ψ in PbPb collisions at 2.76 TeV

→Compatible within uncertainties with theoretical calculations Looking to see the new measurement with Run2 data with higher statistics!

prompt and non prompt charmonia

- Prompt component:
 affected by color screening and regeneration in the QGP
- Nonprompt component: reflects E_{loss} of b quarks in the medium

Separation of components based on **pseudo-proper decay length** $(\ell_{J/\psi})$:

$$\ell_{ extstyle J/\psi}^{ extstyle J/\psi} = \mathcal{L}_{ extstyle xyz} \cdot rac{m_{ extstyle J/\psi}}{p_{\mu\mu}}$$

Ta-Wei Wang's talk (8th):
nonprompt charmonia
& full B reconstruction

prompt and non prompt charmonia

Two techniques to separate components:

I. 2D fits of dimuon mass and pseudo-proper decay length

2. Rejecting nonprompt using a cut on $\ell_{ extsf{J/\psi}}$

(can be used with low stats: $\psi(2S)$ analyses)

Correction (from data) to account for remaining nonprompt contamination:

- Using reverted $\ell_{J/\psi}$ cut
- MC efficiency of $\ell_{J/\psi}$ cut

ψ(2S)/J/ψ vs p_T

- $R_{AA}(\psi(2S))/R_{AA}(J/\psi) < I$ in all bins $\rightarrow \psi(2S)$ is more suppressed than J/ψ
- No p_T dependence within uncertainties
- X. Du and R. Rapp: transport model with temperature dependent reaction rates $\rightarrow \Psi(2S)$ regenerated later than J/ Ψ in the fireball evolution?

ψ(2S) /J/ψ vs centrality

2.76 vs. 5.02 TeV

CMS results vs centrality, p_T and rapidity can help to constrain the model:

- Relative contribution of primordial and regenerated charmonia
- Dissociation and regeneration rates
- Temperatures at which J/ ψ and ψ (2S) regenerate

• ...

Comparison to theoretical calculations

CMS non prompt 1.6<|y|<2.4 CMS non prompt |y|<2.4

arXiv:1610.00613, Submitted to Eur. Phys. J. C

Strong suppression observed for non prompt J/ ϕ in PbPb collisions Clear suppression as a function of p_T